

REVISED 2014 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade			
A	71	35.3%			
В	59	24.9%			
С	48	20.7%			
D	42	7.0%			
No award	<42	12.1%			
	Section: Multiple	Choice Extended Answer			

43.6

/60

/40

19.2

Average Mark:

2014 Revised Higher Chemistry Marking Scheme												
MC Qu	Answer	% Pupils Correct	Reasoning									
1	В	75										
2	С	90 OldH=83	 A boiling points increase as greater London dispersion forces down group 7 B covalent radius increases as extra shell of electrons is added C Electronegativity decreases down group 7 (data booklet page 11) D London dispersion forces are greater as bigger atoms more likely to temp dipole 									
3	A	67 OldH=56	 ☑A Electronegativies: Be=1.5 & Cl=3.0 ∴ difference = 1.5 ∴ least ionic character ☑B Electronegativies: Ca=1.3 & Cl=3.0 ∴ difference = 1.7 ☑C Electronegativies: Li=1.0 & Cl=3.0 ∴ difference = 2.0 ☑D Electronegativies: Cs=0.8 & Cl=3.0 ∴ difference = 2.2 ∴ most ionic character 									
4	В	35	 A Argon is monatomic so would have less London dispersion forces than Cl₂ B Chlorine Cl₂ is diatomic and twice as many atom than argon for the temp dipole C nitrogen has many less electrons than chlorine & less likely to form temp dipole O oxygen has many less electrons than chlorine & less likely to form temp dipole 									
5	A	87	IA CO_2 is non-polar due to the shape of the molecule which cancels out polarity IB H ₂ O is a bent polar molecule with two polar O-H bonds IC HCl is a straight polar molecule with ane polar H-Cl bond ID CHCl ₃ is a polar molecule with three polar C-Cl bonds									
6	A	67	aryophyllene is a hydrocarbon with formula $C_{15}H_{24}$. All hydrocarbons are non-polar. A Hexane is a non-polar solvent an will dissolve caryophyllene B Hexanal is a polar solvent and will dissolve caryophyllene (C=O is polar group) C Hexan-2-ol is a polar solvent and will dissolve caryophyllene (O-H is polar group) D Hexan-3-one is a polar solvent and will dissolve caryophyllene (C=O is polar group)									
7	D	64	Oxidising agents are reduced themselves while oxidising something else. $\blacksquare A \text{ Li}^* + e^- \rightarrow \text{Li}$ is a reduction reaction but further up table so less powerful agent $\blacksquare B \text{ Li} \rightarrow \text{Li}^* + e^-$ is a oxidation reaction so would act as a reducing agent $\blacksquare C 2F^- \rightarrow F_2 + 2e^-$ is a oxidation reaction so would act as a reducing agent $\blacksquare D F_2 + 2e^- 2F^-$ is a reduction reaction (low down table so powerful oxidising agent)									
8	A	46 OldH=47	 ☑ A Al → Al³⁺ + 3e⁻: aluminium metal is oxidised ∴ aluminium metal is reducing agent ☑ B Ag⁺ + e⁻ → Ag: silver ions are reduced ∴ silver ions acting as oxidising agent ☑ C Ag⁺ + e⁻ → Ag: silver ions are reduced ∴ silver ions are electron acceptors ☑ D sulphide ions are unchanged and are spectator ions 									
9	В	84	 A Structure shown is 6-hydroxy-4-methyl-2-pyrone B Structure shown is 4-hydroxy-6-methyl-2-pyrone C Structure shown is 3-hydroxy-5-methyl-2-pyrone D Structure shown is 5-hydroxy-3-methyl-2-pyrone 									
10	С	59 OldH=70	 A esters are insoluble in water and are used as solvents B esters are sweet smelling and are used in perfumes C Esters are not used in toothpastes D esters are sweet smelling and are used in flavourings 									
11	D	73	 A fats & oils both contain three ester links and no hydroxyl groups B aldehydes & ketones contain carbonyl groups not carboxyl groups C aldehydes & ketones contain carbonyl groups not carboxyl groups D aldehydes/ketones contain carbonyl groups and fats/oils contain ester links 									

Г

12	В	84	☑B oxide 座C redu 座D cond	A hydration: removal of a water molecule leaving behind a C=C double bond B oxidation: nicotinyl alcohol — nicotinic acid is primary alcohol — carboxylic acid C reduction would reverse the reaction of carboxylic acid — primary alcohol D condensation: two smaller molecules join together removing water at join point A proteins are mainly covalent structures								
13	С	65	⊠B coval ☑C hydr 返D cova	A proteins are mainly covalent structures. B covalent bonds would take more energy to break than denaturing requires C hydrogen bonding between side groups in protein are broken during denaturing D covalent bonds would take more energy to break than denaturing requires								
14	D	62	⊠B Benz ⊠C Benz	A Benzaldehyde is less soluble as it lakes the polar -OH hydroxyl group B Benzaldehyde is less soluble as it lakes the polar -OH hydroxyl group C Benzaldehyde would be more volatile as it has less intermolecular attractions D Benzaldehyde is less soluble and more volatile than vanillin								
15	D	74	Group: Structure	Aldehyde -C H	Carboxylic Acid	Ester 0 -C-O-C	Кетопе 0 ССС					
16	В	84	⊠B head ⊠C head	A head of soap is hydrophilic (likes water) & tail of soap is hydrophobic (likes oil) B head of soap is hydrophilic (likes water) & tail of soap is hydrophobic (likes oil) C head of soap is hydrophilic (likes water) & tail of soap is hydrophobic (likes oil) D head of soap is hydrophilic (likes water) & tail of soap is hydrophobic (likes oil)								
17	D	32	⊠B struc ≥C struc	A structure shown is glycerol (propane-1,2,3-triol) B structure shown is a fat or oil C structure shown is a fatty acid D structure shown acts as an emulsifier as it has an -OH group and fatty group.								
18	В	76		of humulene = C ₁₅ H ₂ , units are units of 5		ne formed from 3	isoprene units					
19	В	58 OldH=67	⊠A gfm ⊠B gfm ⊠C gfm	soprene units are units of 5 carbons \therefore humulene formed from 3 isoprene units fm of SO ₂ =64.1g \therefore no. of mol = $\frac{mass}{gfm} = \frac{128.2}{64.1} = 2mol$ of SO ₂ A gfm H ₂ =2g \therefore no. of mol = $\frac{mass}{gfm} = \frac{2.0}{2} = 1mol$ of H ₂ B gfm He=4g \therefore no. of mol = $\frac{mass}{gfm} = \frac{8.0}{4} = 2mol$ of He C gfm O ₂ =32g \therefore no. of mol = $\frac{mass}{gfm} = \frac{32}{32} = 1mol$ of O ₂ D gfm Ne=20 2a \therefore no. of mol = $\frac{mass}{gfm} = \frac{80.8}{3232} = 4mol$ of Ne								
20	A		☑A At e At e ॾB At e ॾC At e	 D gfm Ne=20.2g ∴ no. of mol = mass/gfm = ^{80.8}/_{20.2} = 4mol of Ne A At equilibrium, rates of forward & reverse reactions are equal At equilibrium, concentrations of reactants and products are constant B At equilibrium, rate of forward reaction = rate of reverse reaction C At equilibrium, concentrations of reactants and products are constant D At equilibrium, concentrations of reactants and products are constant 								
21	С	59 OldH=59	⊠B forw ⊠C low p	ard reaction is endo ard reaction is endo ressure and high te vard reaction increas	othermic ∴ high ter mperature favour t	nperature favours he production of c	forward reaction arbon dioxide					
22	A	59 OldH=51	⊠A slowe ⊠B grad ⊠C redu	er gradient of line (ient of line less stea ction in mass of cha tion rate would be c	powder→lump) and ep as lumps react sl lk to 0.5g would hal	volume of gas halv ower than powder f the volume of ga	ed (1g→0.5g) s given off					
23	A	38 OldH=39	EB Curve EC Curve	e R: higher tempera e R must have a high e R has greater area e R must have a high	ner temperature th a due to greater nu	an curve Q mber of particles	irea under curve)					

			activation energy (reverse catalysed reaction)		activation energy ysed forward reaction	· +	enthalpy change					
24		68	(reverse cururysed reaction)	=	35	•) +	(190-160)					
24	C	OldH=76		=	35	+	30					
		Oldri-70		=	65kJ mol ⁻¹							
25		50	n o. of moles = v olume x c oncentration = 0.1 litre x 1 mol l^{-1} = 0.1 mol									
25	C	OldH=52	0.1mol releases -3.1kJ ∴	1mol rele	eases -31kJ							
26		00	The enthalpy of combust	on is de	fined as the en	ergy	change for the					
26	J	90	complete combustion of c	ne mole	of a substance	•						
			• $C(graphite)$ +	$O_2 \rightarrow$	CO2		∆H=-394 kJ mol ⁻¹					
			C(diamond) +	$O_2 \rightarrow$	CO2		∆H=-395 kJ mol ⁻¹					
27	В	67 OldH=65	• $C_{(graphite)}$ +	$O_2 \rightarrow$	CO ₂		∆H=-394 kJ mol ⁻¹					
61			e x-1 <i>CO</i> ₂	\rightarrow	-	D 2	Δ H=+395 kJ mol ⁻¹					
			Add ❶+❷' C(graphite)	\rightarrow	\mathcal{C} (diamond)		Δ H=+1 kJ mol ⁻¹					
			A Substance A would be 4 th	•	•		•					
28	Ν	39	B Substance B would be 1 st		•							
20	U	57	EC Substance C would be 2 nd		•	-	•					
			☑D Substance D is the bigges ☑A bottom of meniscus is use									
			B the liquid should overshoo			•••						
29	D	48	EC bottom of meniscus is use									
	U		☑D the bottom of the meniscus should be used to measure volume on a pipette and									
			the mark should be oversl	not and liq	uid released back	to do	wn to the mark.					
			A neither a dropper or a me	5,		•						
30	C	48	B a measuring cylinder is no		• •		-					
	5		 ✓C pipettes & volumetric flask ☑D a measuring cylinder is no 									
			measuring cylinder is ho	an accur	are enough way of	meas						

2014 Revised Higher Chemistry Marking Scheme									
Long Qu	Answer	Reasoning							
<u>1a</u>	metallic covalent network molecular	Bonding Metallic solid Monatomic gas Covalent network Discrete covalent molecular ga Discrete covalent molecular sol							
<u>1b</u>	Same shell filling up and more positive nucleus pulls in outer shell more	Elements in same period have same number of occupied electron shells meaning the element does not increase in size across period. The nucleus becomes increasing positive across a period and this increased charge is attracted to the outer shell more and decreases the size of the atom.							
1c(i)	distillation	(Fractional) Distillation separates chemicals with different boiling points							
1c(ii)	5.77×10 ⁷ tonnes	1.3% mass ←→ 750000 tonnes 100% mass ←→ 750000 tonnes × 100 = 5.77×10 ⁷ tonnes							
1c(iii)	Magnesium reacts with oxygen	Magnesium is a reactive metal which would react woth any available oxygen gas to form magnesium oxide (in a vigorous reaction)							
1c(iv)	Open Question Answer to Include:	understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a the s	2 mark answer nonstrates a <u>reasonable</u> erstanding of the chemistry lved, making some rement(s) which are relevant to situation, showing that the olem is understood.	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.					
2a (i)	Enzyme changes shape when heated	Enzymes are denatured when the con optimum pH or temperature. This ch into the exact shape of the enzyme of the enzyme.	nange of shape prevents the	e substrate molecule from fitting					
2a(ii)	Decrease in oxygen:hydrogen ratio	Reduction is defined as a reduct The reduction reaction in the qu alkanol ethanol to alkanal ethana	lestion is the opposite of al.	f the oxidation of primary					
2a(iii)	87.1%	$\begin{array}{c c} \hline C_{6}H_{12}O_{6} & \longrightarrow 2C_{2}H_{5}OH + 2CO_{2} \\ \hline 1mol & 2mol \\ 180g & 92g \\ 1000g & 92gx^{1000}/_{180} \\ & = 511.1g \\ \% \text{Yield} = \frac{Actual}{\text{Theoretical}} \times 100 = \frac{445}{511.1} \times 100 = 87.1\% \end{array}$							
2b	-29717	%Yield = $\frac{1}{\text{Theoretical}} \times 100 = \frac{1}{511.1} \times 100 = 87.1\%$ 1mol C ₂ H ₅ OH = (2×12)+(6×1)+(1×16) = 24+6+16 = 46g = 0.046kg 1mol C ₂ H ₅ OH = 0.046kg = -1367 kJ 1 kg = -1367 kJ × $\frac{1}{0.046}$ = -29717 kJ kg ⁻¹							

2c	3.87	Specific gravity before fermentation = 1035 Specific gravity after fermentation = 1005 Change in specific gravity = 1035 - 1005 = 30 ∴ f=0.129 % alcohol = change in specific gravity × f = 30 × 0.129 = 3.87%					
3α	-545	$ \begin{array}{c c} \underline{Bond \ Breaking \ Steps} \\ 1x \ H-H = 1x436kJ = 436kJ \\ 1x \ F-F = 1x159kJ = 159kJ \\ \hline Total = 595kJ \\ \hline \Delta H = \Sigma Bond \ enthalpies \ for \ bonds \ broken \\ \Delta H = 595 \\ \hline \Delta H = -545 \ kJ \ mol^{-1} \\ \hline \end{array} $					
3b	Answer to include:	H-F has hydrogen bonding which raises the b.pt. by bringing the molecules closer together. F-F is non-polar covalent molecular. B.pt. is lower as there is only weak London Dispersion Forces between molecules.					
4a	Diagram showing:	calcium oxide					
4b(i)	37.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
4b(ii)	-147	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
5a (i)	$C_6H_8O_6$ \downarrow $C_6H_6O_6 + 2H^+ + 2e^-$	Redox equation: I_2 + $C_6H_8O_6$ $\leftarrow C_6H_6O_6$ + $2H^+$ + $2I^-$ Reduction equation: I_2 + $2e^ \sim 2I^-$ Oxidation equation: $C_6H_8O_6$ $\leftarrow C_6H_6O_6$ + $2H^+$ + $2e^-$					
5a (ii)	Glass ware water iodine Fruit juice Pipette ✓ Burette ✓ conical flask ✓	pipette with fruit juice burette with iodine solution(both for 1 mark)Rinseconical flask with water(1mark)					
5a (iii)	Answer to include:	improve reliability or allow average value to be taken					

5a(iv)	0.2794g	no. of mol I ₂ = volume × concentration = 0.0254litres × 0.00125 _{mol} L ¹ = 3.175×10 ⁻⁵ mol C ₆ H ₈ O ₆ + I ₂ → C ₆ H ₆ O ₆ + 2H ⁺ + 2I ⁻ 1mol 1mol 3.175×10 ⁻⁵ mol 3.175×10 ⁻⁵ mol ∴ 20cm ³ orange juice contains 3.175×10 ⁻⁵ mol Vitamin C (C ₆ H ₈ O ₆) ∴ 1000cm ³ orange juice contains 3.175×10 ⁻⁵ mol Vitamin C (C ₆ H ₈ O ₆) ∴ 1000cm ³ orange juice contains 3.175×10 ⁻⁵ mol Vitamin C (C ₆ H ₈ O ₆) 1 mol Vitamin C (C ₆ H ₈ O ₆) = (6×12) + (8×1) + (6×16) = 72+8+96 = 176g mass = no. of mol × gfm = 1.5975×10 ⁻³ mol × 176 g mol ⁻¹ = 0.2794g 1 litre = 1000cm ³ orange juice = 240mg vitamin C 200cm ³ orange juice = 240mg vitamin C × $\frac{200}{1000}$						
5b	80%	$= 48 \text{ mg vitamin } C$ $= 48 \text{ mg vitamin } C$ $\% \text{ rda} = \frac{48 \text{ mg}}{60 \text{ mg}} \times 100 = 80\%$						
6a (i)	water bath	No naked flames should be used to heat the ester as both the reactants and products are flammable.						
6a (ii)	condensation	Condensation joins together smaller molecules together to form a larger molecule with the removal of a small molecule (e.g. water) where the molecules join together. Hydrolysis is the opposite reaction.						
6a(iii)	Diagram showing:	$ \bigcirc -C \subset \bigcirc 0 H H \\ 0 - C - C - H \\ H H $						
6b	82.3%	$2C_{6}H_{5}COOH + Na_{2}CO_{3} \rightarrow 2C_{6}H_{5}COONa + H_{2}O + CO_{2}$ $2mol \qquad 1mol \qquad 2mol \qquad 1mol \qquad 1mol \qquad 1mol$ $244g \qquad 106g \qquad 288g$ $350g$ $atom \ economy = \frac{mass \ of \ desired \ product}{total \ mass \ of \ reactants} = \frac{288}{350} \times 100 = 82.3\%$						
7a	0 H 	Amide links are found in polyamide O H polymers while peptide links are found $ $ $ $ in proteins. Both have the structure: $-C$ N						
7b	Hydroxyl	Hydroxyl groups have the formula -OH and found in alcohols and alkanols						
7c(i)	Glycerol	Glycerol is also known as propane-1,2,3-triol and has the structure:HHH <t< td=""></t<>						
7c(ii)	£18	5g behenic acid \iff 50.0 cm ³ ben oil 20g behenic acid \iff 50.0 cm ³ ben oil x $\frac{20}{5}$ =200 cm ³ ben oil 1 litre = 1000cm ³ ben oil \iff £90 200cm ³ ben oil \iff £90 x $\frac{200}{1000}$ = £18						

	Dotted line between	Hydrogen bonding occur between molecules containing N-H groups, O-H										
/ C(iii)	N-H group and O-H group or between OH groups	-	5 1			. The boiling point of the substance is elevated as oser together due to the hydrogen bonding.						
	or between orr groups	Ine		k answer		2 mark answer			1 mark answer			
7d	Open Question Answer to Include:	inv inv the log sta inv	emonstrates a <u>good</u> derstanding of the chemistry volved. A good comprehension of e chemistry has provided in a gically correct, including a atement of the principles volved and the application of ese to respond to the problem.		Demonstru understan involved, r statement the situat problem is	Demonstrates a <u>reasonable</u> understanding of the chemistry			Demonstrates a <u>limited</u> understanding of the chemist involved. The candidate has m some statement(s) which are relevant to the situation, show that at least a little of the chemistry within the problem understood.			
8a (i)	Atom/molecule with unpaired electron	ele	ctron. T	uls are extro his unpairec red again.	•	•			•			
8a (ii)	UV radiation breaks bonds	Ult	raviolet	radiation b ecules with a				d fori	ms reactive	2		
				Step	React (before)				Products (after Arrow			
0			Ini	tiation	No free on Left H				ree radical ight Hand			
8a(iii)	Propagation		Prop	pagation	Free F	Radicals fo	ound on l	both	sides of ar	row		
		Terr		nination	-	Free radicals on			No free radicals on Right Hand Side			
8b	Diagram showing:		<i>O=C=C=C=O</i>)				
9a	14°C	Wh	ien rate	= 0.02 s ⁻¹ † = 0.04 s ⁻¹ † ure rise = 5	hen tempe	rature = 5						
9b	Correct energy and correct geometry	ene	rgy mus	ion to be su t be supplie gle of collisi	ed to the c	ollision to	overcon	ne th	e activatio	n energy		
10a	Answer to include:		1 mark: 1 mark:	nark: Primary alcohol (-OH on end) of molecule has higher boiling point <u>or</u> Secondary/Tertiary alcohol (-OH in middle) has lower boiling point Straight-chained alkanols have a higher boiling point or					point <u>or</u>			
		ł	\lkanol	Butan-1-ol	Butan-2-ol	Pentan-1-	ol Pentan	-2-ol	Hexan-1-ol	Hexan-2-ol		
	T	Boili	ng Point (°C)	118°C	93°C	137°C	119	°C	159°C	-		
10b	Temperature between		fference	25	°C		18°C		(11-2	25°C)		
	121°C-149°C	Boili	Predicted ng Point (°C)	-	-	-	-		-	134-148°C		
				-ol boiling poi -ol boiling poi			51					
				rite down the						_ 0, (117 0)		
				0₄⁻			IO ₃ -					
			_		ce all atoms except O and H (not required in this question))		
	IO4 ⁻ + 2H⁺ + 2e ⁻		I	04 ⁻			IO3 ⁻	0 -+				
11a	\downarrow	Add H ₂ O to other side to balance O atoms $IO_4^- \rightarrow IO_3^- + H_2O$										
	IO3 ⁻ + H2O		T		H⁺ ions to a		•					
			I	O₄ ⁻ + 2H⁺			IO₃⁻					
			-		e ⁻ to most p				-			
			$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O^-$									

		Γ	1 mark:	mention of tra	nsferrina	rinsings				1		
11b(i)	Answer to include:					3						
11b(ii)	0.000235g	1 mark: mention of making solution up to the mark of flask Line of best fit must be used to work out concentration from absorbance From Graph: Absorbance = 0.3 ∴ permanganate concentration = 28mg l ⁻¹ NB Although the point on the graph for Absorbance=0.30 has a concentration of 30mg l ⁻¹ , the absorbance must be read from the best fit straight line drawn instead. 1 litre of solution ∴ solution contains 28 mg of permanganate ions MnO4 ⁻ gfm MnO4 ⁻ = (1x54.9)+(4x16) = 54.9+64 = 118.9g no. of mol = mass gfm Mn(s) Mn ⁺²⁺ (aq) Mn(s) Mn ⁺²⁺ (aq) Mnol 0.000235mol 0.000235mol 0.000235mol gfm Mn = 54.9g 0.000235mol × 54.9q mol ⁻¹ = 0.01293g = 12.93mg										
12a	0.973litres	1mol of RI gfm C₃H6	DX produces N₀O₀ = (3x1 C3H6 1m 0.004!	9 moles of gas produ 12)+(6×1)+(6×14)+(6× no. of mol = <u>mass</u> gfm N6O6(s) 101 101 50mol	$CO + 3mol H_2O + 3mol N_2)$ $6+84+96 = 222g$ $\frac{1g}{2 \text{ g mol}^{-1}} = 0.00450 \text{mol}$ $CO(g) + 3H_2O(g) + 3N_2(g)$ nol $3mol$ $9mol$ 0.0405mol					2		
12b	C5H6N6O6 ↓ 2CO+4H2O+3CO2+2N2	Rule 1 2 3 4	40 0	Quantity 5xC of total 70 react with remaining react with 4N join to form N ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				of Produ	ic†s		